Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays
نویسندگان
چکیده
منابع مشابه
Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays
Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C) has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electr...
متن کاملMicroelectrode Arrays
The development of implantable devices which enable fully wireless transmission of brain signals, recorded by microelectrode arrays (MEA) as dynamical neural circuit information, is one important goal for advancing human neuroprostheses. Current brain sensing research for prostheses via first clinical trials is offering tantalizing glimpses for the future, even if these technologies are cumbers...
متن کاملDiamond and Polycrystalline Diamond for MEMSApplications :
To date most of the MEMS devices are been based on Silicon. This is due to the technological know-how accumulated on manipulating, machining, manufacturing of Silicon. However, only very few devices involve moving parts. This is because of the rapid wear arising from high friction in these Silicon based systems. Recent tribometric experiments carried out by Gardos on Silicon and polycrystalline...
متن کاملLearning in human neural networks on microelectrode arrays
This paper describes experiments involving the growth of human neural networks of stem cells on a MEA (microelectrode array) support. The microelectrode arrays (MEAs) are constituted by a glass support in which a set of tungsten electrodes are inserted. The artificial neural network (ANN) paradigm was used by stimulating the neurons in parallel with digital patterns distributed on eight channel...
متن کاملThin film polycrystalline silicon nanowire biosensors.
Polysilicon nanowire biosensors have been fabricated using a top-down process and were used to determine the binding constant of two inflammatory biomarkers. A very low cost nanofabrication process was developed, based on simple and mature photolithography, thin film technology, and plasma etching, enabling an easy route to mass manufacture. Antibody-functionalized nanowire sensors were used to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biosensors
سال: 2011
ISSN: 2079-6374
DOI: 10.3390/bios1030118